ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 130 131 132 133 134 135 136 >> [Всего задач: 7526]      



Задача 54158

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Вспомогательные равные треугольники ]
Сложность: 3-
Классы: 8,9

Пусть P – основание перпендикуляра, опущенного из вершины C меньшего основания BC равнобедренной трапеции ABCD на её большее основание AD. Найдите DP и AP, если основания трапеции равны a и b  (a > b).

Прислать комментарий     Решение

Задача 54159

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Параллелограмм Вариньона ]
Сложность: 3-
Классы: 8,9

Найдите углы и стороны четырёхугольника с вершинами в серединах сторон равнобедренной трапеции, диагонали которой равны 10 и пересекаются под углом 40o.

Прислать комментарий     Решение


Задача 54188

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

В равнобедренном треугольнике ABC угол при вершине B равен 120°, а основание равно 8. Найдите боковые стороны.

Прислать комментарий     Решение

Задача 54200

Темы:   [ Правильный (равносторонний) треугольник ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3-
Классы: 8,9

Найдите высоту и радиусы вписанной и описанной окружностей равностороннего треугольника со стороной a.

Прислать комментарий     Решение

Задача 54207

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3-
Классы: 8,9

Точка M расположена на стороне CD квадрата ABCD с центром O, причём  CM : MD = 1 : 2.
Найдите стороны треугольника AOM, если сторона квадрата равна 6.

Прислать комментарий     Решение

Страница: << 130 131 132 133 134 135 136 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .