ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



Задача 115775

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Скалярное произведение. Соотношения ]
[ Векторы помогают решить задачу ]
[ Конкуррентность высот. Углы между высотами. ]
[ Теорема Паскаля ]
Сложность: 4-
Классы: 8,9,10,11

Дан прямоугольник ABCD и точка P. Прямые, проходящие через A и B и перпендикулярные, соответственно, PC и PD, пересекаются в точке Q.
Докажите, что  PQAB.

Прислать комментарий     Решение

Задача 115777

Темы:   [ Трапеции (прочее) ]
[ Теорема синусов ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 8,9,10,11

В трапеции ABCD с основаниями AD и BC  P и Q – середины диагоналей AC и BD соответственно.
Докажите, что если ∠DAQ = ∠CAB, то ∠PBA = ∠DBC.

Прислать комментарий     Решение

Задача 115783

Темы:   [ Частные случаи тетраэдров (прочее) ]
[ Объем тетраэдра и пирамиды ]
[ Площадь и объем (задачи на экстремум) ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Шноль Д.Э.

Основанием пирамиды является правильный треугольник со стороной 1. Из трёх углов при вершине пирамиды два – прямые.
Найдите наибольший объём пирамиды.

Прислать комментарий     Решение

Задача 115773

Темы:   [ Правильный (равносторонний) треугольник ]
[ ГМТ - окружность или дуга окружности ]
[ Поворот помогает решить задачу ]
Сложность: 4
Классы: 8,9,10,11

Найдите геометрическое место центров правильных треугольников, стороны которых проходят через три заданные точки A, B, C (то есть на каждой стороне или ее продолжении лежит ровно одна из заданных точек).

Прислать комментарий     Решение

Задача 115776

Темы:   [ Вписанные и описанные окружности ]
[ Три точки, лежащие на одной прямой ]
[ Теорема синусов ]
[ Симметрия помогает решить задачу ]
[ Хорды и секущие (прочее) ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 8,9,10,11

На стороне AB треугольника ABC взяты такие точки X, Y, что  AX = BY.  Прямые CX и CY вторично пересекают описанную окружность треугольника в точках U и V. Докажите, что все прямые UV проходят через одну точку.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .