Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 188]
|
|
Сложность: 2+ Классы: 5,6,7
|
Трём мудрецам показали 9 карт: шестерку, семерку, восьмерку, девятку, десятку, валета, даму, короля и туза (карты перечислены по возрастанию их достоинства). После этого карты перемешали и каждому раздали по три карты. Каждый мудрец видит только свои карты. Первый сказал: "Моя старшая карта – валет". Тогда второй ответил: "Я знаю, какие карты у каждого из вас". У кого из мудрецов был туз?
|
|
Сложность: 3- Классы: 5,6,7
|
Сумма трёх различных наименьших делителей некоторого числа A
равна 8. На сколько нулей может оканчиваться число A?
|
|
Сложность: 3- Классы: 6,7,8
|
Коля и Макс живут в городе с треугольной сеткой дорог (см. рисунок). В этом городе передвигаются на велосипедах, при этом разрешается поворачивать только налево. Коля поехал в гости к Максу и по дороге сделал ровно 4 поворота налево. На следующий день Макс поехал к Коле и приехал к нему, совершив только один поворот налево. Оказалось, что длины их маршрутов одинаковы. Изобразите, каким образом они могли ехать (дома Коли и Макса отмечены).
|
|
Сложность: 3- Классы: 5,6,7
|
Четверо детей сказали друг о друге так.
Маша: Задачу решили трое: Саша, Наташа и Гриша.
Саша: Задачу не решили трое: Маша, Наташа и Гриша.
Наташа: Маша и Саша солгали.
Гриша: Маша, Саша и Наташа сказали правду.
Сколько детей на самом деле сказали правду?
|
|
Сложность: 3- Классы: 5,6,7
|
Убирая детскую комнату к приходу гостей, мама нашла девять носков. Среди каждых четырёх из этих носков хотя бы два принадлежали одному ребёнку, а среди каждых пяти не более трёх имели одного хозяина. Сколько могло быть детей и сколько носков могло принадлежать каждому ребёнку?
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 188]