Страница:
<< 1 2 [Всего задач: 9]
Задача
116659
(#6.6)
|
|
Сложность: 3 Классы: 5,6,7
|
Верёвочку сложили пополам, потом ещё раз пополам, потом снова пополам, а затем все слои верёвочки разрезали в одном месте.
Какова могла быть длина верёвочки, если известно, что какие-то два из полученных кусков имели длины 9 метров и 4 метра?
Задача
116660
(#6.7)
|
|
Сложность: 3 Классы: 5,6,7
|
Пятизначное число называется неразложимым, если оно не раскладывается в произведение двух трёхзначных чисел.
Какое наибольшее количество неразложимых пятизначных чисел может идти подряд?
Задача
116661
(#6.8)
|
|
Сложность: 3+ Классы: 5,6,7
|
Можно ли 100 гирь массами 1, 2, 3, ..., 99, 100 разложить на 10 кучек разной массы так, чтобы выполнялось условие: чем тяжелее кучка, тем меньше в ней гирь?
Задача
116662
(#6.9)
|
|
Сложность: 4 Классы: 5,6,7
|
План дворца шаха – это квадрат размером 6×6, разбитый на комнаты размером 1×1. В середине каждой стены между комнатами есть дверь. Шах сказал своему архитектору: "Cломай часть стен так, чтобы все комнаты стали размером 2×1, новых дверей не появилось, а путь между любыми двумя комнатами проходил не более, чем через N дверей". Какое наименьшее значение N должен назвать шах, чтобы приказ можно было выполнить?
Страница:
<< 1 2 [Всего задач: 9]