Страница:
<< 8 9 10 11 12 13
14 >> [Всего задач: 69]
|
|
Сложность: 3+ Классы: 9,10,11
|
Центр О окружности, описанной около четырёхугольника АВСD, лежит внутри него. Найдите площадь четырёхугольника, если ∠ВАО = ∠DAC,
AC = m, BD = n.
|
|
Сложность: 3+ Классы: 9,10,11
|
Куб с ребром n составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких n это возможно?
|
|
Сложность: 3+ Классы: 9,10,11
|
Пусть x1, x2, ..., xn – некоторые числа, принадлежащие отрезку [0, 1].
Докажите, что на этом отрезке найдется такое число x, что
1/n (|x – x1| + |x – x2| + ... + |x – xn|) = ½.
|
|
Сложность: 4- Классы: 10,11
|
В кубе с ребром длины 1 провели два сечения в виде правильных шестиугольников.
Найдите длину отрезка, по которому эти сечения пересекаются.
|
|
Сложность: 4- Классы: 10,11
|
В треугольнике ABC: ∠B = 22,5°, ∠C = 45°. Докажите, что высота АН, медиана BM и биссектриса CL пересекаются в одной точке.
Страница:
<< 8 9 10 11 12 13
14 >> [Всего задач: 69]