Страница:
<< 8 9 10 11 12 13 14 [Всего задач: 69]
|
|
Сложность: 4- Классы: 10,11
|
В футбольном чемпионате участвуют 18 команд. На сегодняшний день проведено 8 туров (в каждом туре все команды разбиваются на пары и в каждой паре команды играют друг с другом, причём пары не повторяются). Верно ли, что найдутся три команды, которые не сыграли ни одного матча между собой?
|
|
Сложность: 4- Классы: 9,10,11
|
В треугольнике АВС проведена биссектриса АА1. Докажите, что серединный перпендикуляр к АА1, перпендикуляр к ВС, проходящий через точку А1, и прямая АО (О – центр описанной окружности) пересекаются в одной точке.
|
|
Сложность: 4- Классы: 9,10,11
|
В треугольнике ABC угол B равен 60°. Точка D внутри треугольника такова, что ∠ADB = ∠ADC = ∠BDC.
Найдите наименьшее значение площади треугольника ABC, если BD = a.
|
|
Сложность: 4- Классы: 9,10,11
|
Существуют ли 2013 таких различных натуральных чисел, что сумма каждых двух из них делится на их разность?
Страница:
<< 8 9 10 11 12 13 14 [Всего задач: 69]