Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 48]
Даны натуральные числа a и b, причём a < 1000. Докажите, что если a21 делится на b10, то a² делится на b.
Незнайка выписал по кругу 11 натуральных чисел. Для каждых двух соседних чисел он посчитал их разность (из большего вычел меньшее). В результате среди найденных разностей оказалось четыре единицы, четыре двойки и три тройки. Докажите, что Незнайка где-то допустил ошибку.
В компании из шести человек любые пять могут сесть за круглый стол так, что каждые два соседа окажутся знакомыми.
Докажите, что и всю компанию можно усадить за круглый стол так, что каждые два соседа окажутся знакомыми.
Занумеруем все простые числа в порядке возрастания: p1 = 2, p2 = 3, ... .
Может ли среднее арифметическое при каком-нибудь n ≥ 2 быть простым числом?
В выпуклом четырёхугольнике ABCD AD = АВ + CD. Оказалось, что биссектриса угла А проходит через середину стороны ВС.
Докажите, что биссектриса угла D также проходит через середину ВС.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 48]