Страница: 1 [Всего задач: 5]
|
|
Сложность: 3+ Классы: 9,10,11
|
Два пирата делили добычу, состоящую из пяти золотых слитков, масса одного из которых 1 кг, а другого – 2 кг. Какую массу могли иметь три других слитка, если известно, что какие бы два слитка ни выбрал себе первый пират, второй пират сможет так разделить оставшиеся слитки, чтобы каждому из них досталось золота поровну?
|
|
Сложность: 3+ Классы: 9,10,11
|
Найдите такое значение $a > 1$, при котором уравнение $a^x = \log_a x$ имеет единственное решение.
|
|
Сложность: 4- Классы: 9,10,11
|
Сравните числа
|
|
Сложность: 4+ Классы: 10,11
|
Известно, что всякую треугольную пирамиду, противоположные рёбра которой попарно равны, можно так разрезать вдоль трёх её рёбер и развернуть, чтобы её развёрткой стал треугольник без внутренних разрезов (см. рис.).
Найдётся ли еще какой-нибудь выпуклый многогранник, который можно так разрезать вдоль нескольких его рёбер и развернуть, чтобы его развёрткой стал треугольник без внутренних разрезов?
|
|
Сложность: 5- Классы: 10,11
|
Саша написал по кругу в произвольном порядке не более ста различных натуральных чисел, а Дима пытается угадать их количество. Для этого Дима сообщает Саше в некотором порядке несколько номеров, а затем Саша сообщает Диме в том же порядке, какие числа стоят под указанными Димой номерами, если считать числа по часовой стрелке, начиная с одного и того же числа. Сможет ли Дима заведомо угадать количество написанных Сашей чисел, сообщив
а) 17 номеров;
б) менее 16 номеров?
Страница: 1 [Всего задач: 5]