Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 39]
Можно ли в кружках (см. рисунок) разместить различные натуральные числа таким образом, чтобы суммы трёх чисел вдоль каждого отрезка оказались равными?
|
|
Сложность: 3+ Классы: 7,8,9
|
Из клетчатой бумаги вырезана прямоугольная рамка (см. рисунок). Её разрезали по границам клеток на девять частей и сложили из них квадрат 6×6. Могли ли все части, полученные при разрезании, оказаться различными? (При складывании квадрата части можно переворачивать.)
Вершину A параллелограмма ABCD соединили отрезками с серединами сторон BC и CD. Один из этих отрезков оказался вдвое длиннее другого. Определите, каким является угол ВАD: острым, прямым или тупым.
|
|
Сложность: 3+ Классы: 7,8,9
|
Три пирата вечером поделили добытые за день бриллианты: по двенадцать Биллу и Сэму, а остальные – Джону, который считать не умел. Ночью Билл у Сэма, Сэм у Джона, а Джон у Билла украли по одному бриллианту. В результате средняя масса бриллиантов у Билла уменьшилась на один карат, у Сэма уменьшилась на два карата, зато у Джона увеличилась на четыре карата. Сколько бриллиантов досталось Джону?
В треугольнике АВС угол В равен 120°, АВ = 2ВС. Серединный перпендикуляр к стороне АВ пересекает АС в точке D. Найдите отношение AD : DC.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 39]