Страница:
<< 1 2 [Всего задач: 8]
Задача
65746
(#9.6)
|
|
Сложность: 4 Классы: 8,9,10
|
Квадрат разбит на n² ≥ 4 прямоугольников 2(n – 1) прямыми, из которых n – 1 параллельны одной стороне квадрата, а остальные n – 1 – другой. Докажите, что можно выбрать 2n прямоугольников разбиения таким образом, что для каждых двух выбранных прямоугольников один из них можно поместить в другой (возможно, предварительно повернув).
Задача
65747
(#9.7)
|
|
Сложность: 4 Классы: 8,9,10
|
Окружность ω вписана в треугольник ABC, в котором AB < AC. Вневписанная окружность этого треугольника касается стороны BC в точке A'. Точка X выбирается на отрезке A'A так, что отрезок A'X не пересекает ω. Касательные, проведённые из X к ω, пересекают отрезок BC в точках Y и Z. Докажите, что сумма XY + XZ не зависит от выбора точки X.
Задача
65748
(#9.8)
|
|
Сложность: 4- Классы: 9,10
|
Сумма положительных чисел a, b, c и d равна 3. Докажите неравенство 1/a² + 1/b² + 1/c² + 1/d² ≤ 1/a²b²c²d².
Страница:
<< 1 2 [Всего задач: 8]