ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 65746  (#10.6)

Темы:   [ Разрезания на параллелограммы ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 4
Классы: 8,9,10

Квадрат разбит на  n² ≥ 4  прямоугольников  2(n – 1)  прямыми, из которых  n – 1  параллельны одной стороне квадрата, а остальные  n – 1  – другой. Докажите, что можно выбрать 2n прямоугольников разбиения таким образом, что для каждых двух выбранных прямоугольников один из них можно поместить в другой (возможно, предварительно повернув).

Прислать комментарий     Решение

Задача 65755  (#10.7)

Темы:   [ Произведения и факториалы ]
[ НОД и НОК. Взаимная простота ]
[ Уравнения в целых числах ]
Сложность: 4+
Классы: 9,10,11

На доске написаны четыре попарно различных целых числа, модуль каждого из которых больше миллиона. Известно, что не существует натурального числа, большего 1, на которое бы делилось каждое из четырёх написанных чисел. Петя записал в тетрадку шесть попарных сумм этих чисел, разбил эти шесть сумм на три пары и перемножил числа в каждой паре. Могли ли все три произведения оказаться равными?

Прислать комментарий     Решение

Задача 65756  (#10.8)

Темы:   [ Вписанные и описанные окружности ]
[ Касающиеся окружности ]
[ Точка Лемуана ]
[ Вписанные четырехугольники (прочее) ]
[ Отношения линейных элементов подобных треугольников ]
[ Три точки, лежащие на одной прямой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Средняя линия треугольника ]
[ Гомотетия помогает решить задачу ]
[ Вспомогательные подобные треугольники ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 5+
Классы: 9,10,11

Пусть ABC – остроугольный треугольник, в котором  AC < BC; M – середина стороны AB. В описанной окружности Ω треугольника ABC, проведён диаметр CC'. Прямая CM пересекает прямые AC' и BC' в точках K и L соответственно. Перпендикуляр к прямой AC', проведённый через точку K, перпендикуляр к прямой BC', проведённый через точку L, и прямая AB образуют треугольник Δ. Докажите, что описанная окружность ω треугольника Δ касается окружности Ω.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .