Страница:
<< 1 2 [Всего задач: 8]
Задача
66281
(#6)
|
|
Сложность: 3+ Классы: 8,9,10
|
В классе 28 учеников. На уроке программирования они делятся на три группы. На уроке английского языка они тоже делятся на три группы, но по-другому. И на уроке физкультуры они делятся на три группы каким-то третьим способом. Докажите, что найдутся хотя бы два ученика, которые на всех трёх занятиях находятся друг с другом в одной группе.
Задача
66282
(#7)
|
|
Сложность: 3+ Классы: 9,10,11
|
На доске в ряд в некотором порядке выписаны несколько степеней двойки. Для каждой пары соседних чисел Петя записал в тетрадку степень, в которую нужно возвести левое число, чтобы получилось правое. Первым в ряду на доске шло число 2, а последним – число 1024. Вася утверждает, что этого достаточно, чтобы найти произведение всех чисел в тетрадке. Прав ли Вася?
Задача
66283
(#8)
|
|
Сложность: 3+ Классы: 10,11
|
Существует ли треугольная пирамида, среди шести рёбер которой:
а) два ребра по длине меньше 1 см, а остальные четыре – больше 1 км?
б) четыре ребра по длине меньше 1 см, а остальные два – больше 1 км?
Страница:
<< 1 2 [Всего задач: 8]