Страница:
<< 1 2 [Всего задач: 8]
Задача
66319
(#10.6)
|
|
Сложность: 3+ Классы: 10,11
|
Сфера, вписанная в пирамиду SABC, касается граней SAB, SBC, SCA в точках D, E, F соответственно.
Найдите все возможные значения суммы углов SDA, SEB и SFC.
Задача
66320
(#10.7)
|
|
Сложность: 4+ Классы: 10,11
|
Четырёхугольник ABCD описан около окружности с центром I и вписан в окружность Ω. Прямые AB и CD пересекаются в точке P, а прямые BC и AD пересекаются в точке Q. Докажите, что описанная окружность ω треугольника PIQ перпендикулярна Ω.
Задача
66321
(#10.8)
|
|
Сложность: 5- Классы: 10
|
На плоскости дано множество S, состоящее из чётного числа точек, никакие три из которых не лежат на одной прямой.
Докажите, что S можно разбить на два множества X и Y так, что выпуклые оболочки conv X и conv Y имеют поровну вершин.
Страница:
<< 1 2 [Всего задач: 8]