Страница: 1 [Всего задач: 5]
Задача
66408
(#1)
|
|
Сложность: 3 Классы: 9,10,11
|
В прямоугольном треугольнике ABC
с прямым углом C провели биссектрисы AK и BN, на которые
опустили перпендикуляры CD и CE из вершины прямого угла.
Докажите, что длина отрезка DE равна радиусу вписанной окружности.
Задача
66409
(#2)
|
|
Сложность: 3 Классы: 9,10,11
|
Диагонали трапеции
ABCD перпендикулярны. Точка M – середина боковой стороны AB,
точка N симметрична центру описанной окружности треугольника ABD
относительно прямой AD. Докажите, что ∠CMN = 90°.
Задача
66410
(#3)
|
|
Сложность: 3+ Классы: 9,10,11
|
Фиксированы окружность, точка
A на ней и точка K вне окружности. Секущая, проходящая через
K, пересекает окружность в точках P и Q. Докажите, что
ортоцентры треугольников APQ лежат на фиксированной окружности.
Задача
66411
(#4)
|
|
Сложность: 3+ Классы: 9,10,11
|
На стороне
AB треугольника ABC выбрана точка M. В треугольнике ACM
точка I1 – центр вписанной, J1 – центр вневписанной
окружности, касающейся стороны CM. В треугольнике BCM точка
I2 – центр вписанной, J2 центр вневписанной окружности,
касающейся стороны CM. Докажите, что прямая, проходящая через
середины отрезков I1I2 и J1J2 перпендикулярна AB.
Задача
66412
(#5)
|
|
Сложность: 4 Классы: 9,10,11
|
На поверхности равногранного тетраэдра
сидят два муравья. Докажите, что они могут встретиться, преодолев в
сумме расстояние, не превосходящее диаметра окружности, описанной
около грани тетраэдра.
Страница: 1 [Всего задач: 5]