Страница:
<< 1 2 [Всего задач: 10]
Три стороны четырёхугольника равны, а углы четырёхугольника, образованные этими сторонами, равны 90° и 150°. Найдите два других угла этого четырёхугольника.
|
|
Сложность: 3+ Классы: 6,7,8
|
Миша сложил из кубиков куб 3×3×3. Затем некоторые соседние по грани кубики он склеил друг с другом. Получилась цельная конструкция из 16 кубиков, остальные кубики Миша убрал. Обмакнув конструкцию в чернила, он поочерёдно приложил её к бумаге тремя гранями. Вышло слово КОТ (см. рис.). Что получится, если отпечатать грань, противоположную букве "О"?
|
|
Сложность: 3+ Классы: 5,6,7
|
В лесу живёт 40 зверей – лисицы, волки, зайцы и барсуки. Ежегодно они устраивают бал-маскарад: каждый надевает маску животного другого вида, причём два года подряд они одну и ту же маску не носят. Два года назад на балу было 12 "лисиц" и 28 "волков", год назад – 15 "зайцев", 10 "лисиц" и 15 "барсуков", а в этом году – 15 "зайцев" и 25 "лисиц". Каких зверей в лесу больше всего?
|
|
Сложность: 4 Классы: 5,6,7
|
Ваня придумывает число из неповторяющихся цифр без нулей – пароль для своего телефона. Пароль работает так: если, не отрывая палец от экрана, последовательно соединить отрезками точки, соответствующие цифрам пароля, телефон разблокируется. При этом телефон не позволяет соединять отрезком две точки, между которыми есть третья: если Ваня соединит, например, 1 и 3, телефон "подумает", что Ваня вводит 1-2-3.
Ваня хочет, чтобы при вводе пароля линия движения пальца не пересекала сама себя. А ещё чтобы перестановкой цифр пароля ни в каком порядке, кроме обратного, нельзя было получить другую такую линию. Например, пароль 1263 Ване не нравится, так как линия 6-3-2-1 другая, но тоже не имеет самопересечений.
Ваня придумал пароль 723 (см. рис.). Эти три цифры — 2, 3 и 7 — действительно никакой другой линией соединить нельзя. Жаль только, что пароль такой короткий.
Помогите Ване придумать пароль подлиннее. В ответе напишите сам пароль и нарисуйте ту единственную линию, которую можно получить из этих цифр.
|
|
Сложность: 4 Классы: 7,8,9
|
Можно ли данную фигуру («верблюда») разбить
а) по линиям сетки;
б) не обязательно по линиям сетки
на 3 части, из которых можно сложить квадрат?
Страница:
<< 1 2 [Всего задач: 10]