ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



Задача 67344  (#11 [8-10 кл])

Темы:   [ Гомотетичные многоугольники ]
[ Прямые, касающиеся окружностей (прочее) ]
Сложность: 4+
Классы: 8,9,10,11

Автор: Бутырин Б.

В треугольнике $ABC$ точки $M$, $N$ – середины сторон $AB$, $AC$ соответственно; серединный перпендикуляр к биссектрисе $AL$ пересекает биссектрисы углов $B$ и $C$ в точках $P$, $Q$ соответственно. Докажите, что прямые $PM$ и $QN$ пересекаются на касательной к описанной окружности треугольника $ABC$ в точке $A$.
Прислать комментарий     Решение


Задача 67345  (#12 [8-10 кл])

Темы:   [ Вспомогательные подобные треугольники ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9,10,11

Биссектрисы $AA_1$, $CC_1$ треугольника $ABC$, в котором $\angle B=60^{\circ}$, пересекаются в точке $I$. Описанные окружности треугольников $ABC$, $A_1IC_1$ пересекаются в точке $P$. Докажите, что прямая $PI$ проходит через середину стороны $AC$.
Прислать комментарий     Решение


Задача 67346  (#13 [8-11 кл])

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 4-
Классы: 8,9,10,11

Верно ли, что любой многоугольник можно разрезать на равнобокие трапеции?
Прислать комментарий     Решение


Задача 67347  (#14 [9-11 кл])

Темы:   [ Гомотетия помогает решить задачу ]
[ Изогональное сопряжение ]
Сложность: 5
Классы: 9,10,11

Автор: Терешин А.

Вписанная окружность $\omega$ прямоугольного треугольника $ABC$ касается окружности, проходящей через середины его сторон, в точке $F$. Из середины $O$ гипотенузы $AB$ проведена касательная $OE$ к $\omega$, отличная от $AB$. Докажите, что $CE=CF$.
Прислать комментарий     Решение


Задача 67348  (#15 [9-11 кл])

Темы:   [ Теорема синусов ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Неравенства с описанными, вписанными и вневписанными окружностями ]
Сложность: 4+
Классы: 9,10,11

Автор: Панов М.Ю.

Разность двух углов треугольника больше $90^{\circ}$. Докажите, что отношение радиусов его описанной и вписанной окружностей больше 4.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .