Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 48]
Задача
67339
(#6 [8-9 кл])
|
|
Сложность: 4 Классы: 8,9,10,11
|
Даны окружность $\omega$ и точки $A$ и $B$ на ней. Пусть $C$ – произвольная точка на одной из дуг $AB$ этой окружности, $CL$ – биссектриса треугольника $ABC$, окружность $BCL$ пересекает $AC$ в $E$, а $CL$ пересекает $BE$ в $F$. Найдите геометрическое место центров окружностей $AFC$.
Задача
67340
(#7 [8-9 кл])
|
|
Сложность: 4 Классы: 8,9,10,11
|
Постройте вписанно-описанный четырёхугольник по двум противоположным вершинам и центру вписанной окружности.
Задача
67341
(#8 [8-9 кл])
|
|
Сложность: 3+ Классы: 9,10,11
|
В четырехугольнике $ABCD$ $\angle B=\angle D$ и $AD=CD$. Окружность, вписанная в треугольник $ABC$, касается сторон $BC$ и $AB$ в точках $E$ и $F$ соответственно. Докажите, что середины отрезков $AC$, $BD$, $AE$ и $CF$ лежат на одной окружности.
Задача
67342
(#9 [8-9 кл])
|
|
Сложность: 4 Классы: 8,9,10,11
|
В трапецию $ABCD$ ($AD\parallel BC$) вписана окружность $\omega$, которая касается сторон $AB$, $BC$, $CD$ и $AD$ в точках $P$, $Q$, $R$, $S$ соответственно. Прямая, проходящая через точку $P$ параллельно основаниям трапеции, пересекает прямую $QR$ в точке $X$. Докажите, что прямые $AB$, $QS$ и $DX$ пересекаются в одной точке.
Задача
67343
(#10 [8-9 кл])
|
|
Сложность: 5- Классы: 8,9,10,11
|
Треугольник $ABC$ вписан в окружность $\omega$. Точка $T$ на прямой $BC$ выбрана так, что прямая $AT$ касается $\omega$. Биссектриса угла $BAC$ пересекает отрезок $BC$ в точке $L$, а окружность $\omega$ в точке $A_0$. Прямая $TA_0$ пересекает $\omega$ в точке $P$. Точка $K$ на отрезке $BC$ такова, что $BL=CK$. Докажите, что $\angle BAP=\angle CAK$.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 48]