ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 67301  (#1)

Темы:   [ Сочетания и размещения ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7,8,9

На урок физкультуры пришло $12$ детей, все разной силы. Учитель $10$ раз делил их на две команды по $6$ человек, каждый раз новым способом, и проводил состязание по перетягиванию каната. Могло ли оказаться так, что все $10$ раз состязание закончилось вничью (то есть суммы сил детей в командах были равны)?
Прислать комментарий     Решение


Задача 67311  (#2)

Темы:   [ Сумма внутренних и внешних углов многоугольника ]
[ Выпуклые многоугольники ]
Сложность: 3
Классы: 7,8,9,10,11

Автор: Юран А.Ю.

Докажите, что среди вершин выпуклого девятиугольника можно найти три, образующие тупоугольный треугольник, ни одна сторона которого не совпадает со сторонами девятиугольника.
Прислать комментарий     Решение


Задача 67317  (#3)

Темы:   [ Теория игр (прочее) ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 7,8,9,10,11

Имеется кучка из 100 камней. Двое играют в следующую игру. Первый игрок забирает 1 камень, потом второй может забрать 1 или 2 камня, потом первый может забрать 1, 2 или 3 камня, затем второй 1, 2, 3 или 4 камня, и так далее. Выигрывает тот, кто забирает последний камень. Кто может выиграть, как бы ни играл соперник?
Прислать комментарий     Решение


Задача 67428  (#4)

Темы:   [ Обыкновенные дроби ]
[ НОД и НОК. Взаимная простота ]
[ Теория алгоритмов (прочее) ]
Сложность: 4
Классы: 7,8,9,10,11

Автор: Дидин М.

Петя загадал положительную несократимую дробь $x = \frac{m}{n}$. Можно назвать положительную дробь $y$, меньшую $1$, и Петя назовёт числитель несократимой дроби, равной сумме $x+y$. Как за два таких действия гарантированно узнать $x$?
Прислать комментарий     Решение


Задача 67304  (#5)

Темы:   [ Соображения непрерывности ]
[ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 7,8,9,10,11

В ряд стоят $9$ вертикальных столбиков. В некоторых местах между соседними столбиками вставлены горизонтальные палочки, никакие две из которых не находятся на одной высоте. Жук ползёт снизу вверх; когда он встречает палочку, он переползает по ней на соседний столбик и продолжает ползти вверх. Известно, что если жук начинает внизу первого столбика, то он закончит свой путь на девятом столбике. Всегда ли можно убрать одну из палочек так, чтобы жук в конце пути оказался наверху пятого столбика?

Например, если палочки расположены как на рисунке, то жук будет ползти по сплошной линии. Если убрать третью палочку на пути жука, то он поползёт по пунктирной линии.
Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .