ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

На ось Ox плоскости Oxy положили N прямоугольников. Требуется найти координаты вершин ломаной, огибающей это множество прямоугольников сверху (см. рис.).



Входные данные

Первая строка входного файла содержит целое число N (1 ≤ N ≤ 100). Далее следуют N строк, в каждой из которых записана тройка вещественных чисел, описывающих очередной из прямоугольников. Первое из них задает абсциссу левого нижнего угла прямоугольника, а остальные два – его длину и высоту.

Выходные данные

В первую строку выходного файла выведите количество вершин искомой ломаной. Далее укажите сами вершины в порядке неубывания абсциссы. Каждая вершина задается своими координатами, записанными через пробел в отдельной строке выходного файла. Никакие два звена ломаной не должны лежать на одной прямой.

Пример входного файла

2
0 4 2
2 4 5

Пример выходного файла

6
0 0
0 2
2 2
2 5
6 5
6 0

Вниз   Решение


Ниже приведён фрагмент мозаики, которая состоит из ромбиков двух видов: "широких" и "узких" (см. рис.).

Нарисуйте, как по линиям мозаики вырезать фигуру, состоящую ровно из 3 "широких" и 8 "узких" ромбиков. (Фигура не должна распадаться на части.)

ВверхВниз   Решение


На плоскости провели N окружностей. Требуется определить площадь их пересечения.

Входные данные

В первой строке входного файла находится целое число N (1 ≤ N ≤ 20). В каждой из последующих N строк записана тройка вещественных чисел, описывающих очередную из окружностей. Первые два числа задают координаты ее центра, третье – радиус.

Выходные данные

Выведите в выходной файл искомую площадь не менее чем с 6 верными значащими цифрами.

Пример входного файла

2
0 0 1
1 1 1

Пример выходного файла

0.570796

ВверхВниз   Решение


Имя входного файла:

numbers.in

Имя выходного файла:

numbers.out

Максимальное время работы на одном тесте:

1 секунда

Максимальный объем используемой памяти:

64 мегабайта

Максимальная оценка за задачу:

100 баллов

   

Саша считает красивыми числа, десятичная запись которых не содержит других цифр, кроме 0 и k (1 ? k ? 9). Например, если k = 2, то такими числами будут 2, 20, 22, 2002 и т.п. Остальные числа Саше не нравятся, поэтому он представляет их в виде суммы красивых чисел. Например, если k = 3, то число 69 можно представить так: 69 = 33 + 30 + 3 + 3.

Однако, не любое натуральное число можно разложить в сумму красивых целых чисел. Например, при k = 5 число 6 нельзя представить в таком виде. Но если использовать красивые десятичные дроби, то это можно сделать: 6 = 5.5 + 0.5.

Недавно Саша изучил периодические десятичные дроби и начал использовать и их в качестве слагаемых. Например, если k = 3, то число 43 можно разложить так: 43 = 33.(3) + 3.(3) + 3 + 3.(3).

Оказывается, любое натуральное число можно представить в виде суммы положительных красивых чисел. Но такое разложение не единственно - например, число 69 можно также представить и как 69 = 33 + 33 + 3. Сашу заинтересовало, какое минимальное количество слагаемых требуется для представления числа n в виде суммы красивых чисел.

Требуется написать программу, которая для заданных чисел n и k находит разложение числа n в сумму положительных красивых чисел с минимальным количеством слагаемых.

Формат входных данных

Во входном файле записаны два натуральных числа n и k (1 ≤ n ≤ 109; 1≤ k ≤ 9).

Формат выходных данных

В выходной файл выведите разложение числа n в сумму положительных чисел, содержащих только цифры 0 и k, количество слагаемых в котором минимально. Разложение должно быть представлено в виде:

n=a1+a2+...+am

Слагаемые a1, a2, ..., am должны быть выведены без ведущих нулей, без лишних нулей в конце дробной части. Запись каждого слагаемого должна быть такой, что длины периода и предпериода дробной части имеют минимально возможную длину. Например, неправильно выведены числа: 07.7; 2.20; 55.5(5); 0.(66); 7.(0); 7. ; .5; 0.33(03). Их следует выводить так: 7.7; 2.2; 55.(5); 0.(6); 7; 7; 0.5; 0.3(30).

Предпериод и период каждого из выведенных чисел должны состоять не более чем из 100 цифр. Гарантируется, что хотя бы одно такое решение существует. Если искомых решений несколько, выведите любое. Порядок слагаемых может быть произвольным.

Выходной файл не должен содержать пробелов.

Примеры

numbers.in

numbers.out

69 3

69=33+33+3

6 5

6=5.5+0.5

10 9

10=9.(9)

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 60]      



Задача 78701

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Правильные многоугольники ]
[ Инверсия помогает решить задачу ]
Сложность: 3
Классы: 8,9,10

В государстве царя Додона расположено 500 городов, каждый из которых имеет форму правильной 37-угольной звезды, в вершинах которой находятся башни. Додон решил обнести их выпуклой стеной так, чтобы каждый отрезок стены соединял две башни. Доказать, что стена будет состоять не менее чем из 37 отрезков. (Если несколько отрезков лежат на одной прямой, то они считаются за один.)

Прислать комментарий     Решение

Задача 32080

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Принцип Дирихле (углы и длины) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9,10

На плоскости даны четыре точки, не лежащие на одной прямой. Докажите, что существует неостроугольный треугольник с вершинами в этих точках.

Прислать комментарий     Решение

Задача 35782

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Центральная симметрия помогает решить задачу ]
[ Выпуклые и невыпуклые фигуры (прочее) ]
Сложность: 3+
Классы: 8,9,10

На круглой сковороде площади 1 испекли выпуклый блин площади больше ½. Докажите, что центр сковороды находится под блином.

Прислать комментарий     Решение

Задача 78481

Тема:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 3+
Классы: 10,11

Из любых шести точек на плоскости (из которых никакие три не лежат на одной прямой) можно так выбрать три, что треугольник с вершинами в этих точках имеет хотя бы один угол, не больший 30o. Доказать.
Прислать комментарий     Решение


Задача 79238

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Неравенства с углами ]
Сложность: 3+
Классы: 9

Пусть на плоскости есть пять точек общего положения, то есть никакие три из них не лежат на одной прямой и никакие четыре — на одной окружности. Докажите, что среди этих точек есть две такие, что они лежат по разные стороны от окружности, проходящей через оставшиеся три точки.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 60]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .