ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Сколькими способами можно выбрать четырёх человек на четыре различные должности, если имеется девять кандидатов на эти должности?

Вниз   Решение


Игральную кость бросают раз за разом. Обозначим через Pn вероятность того, что в какой-то момент сумма очков, выпавших при всех сделанных бросках, равна n. Докажите, что при  n ≥ 7  верно равенство  Pn = ⅙ (Pn–1 + Pn–2 + ... + Pn–6).

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 201]      



Задача 76423

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Квадратные уравнения. Теорема Виета ]
[ Методы решения задач с параметром ]
Сложность: 3
Классы: 9,10

Решить систему уравнений:
  x² + y² – 2z² = 2a²,
  x + y + 2z = 4(a² + 1),
  z² – xy = a².

Прислать комментарий     Решение

Задача 76440

Темы:   [ Симметрические системы. Инволютивные преобразования ]
[ Симметрические многочлены ]
[ Методы решения задач с параметром ]
Сложность: 3
Классы: 8,9,10

Решить систему:
   x + y + z = a,
   x
² + y² + z² = a²,
   x³ + y³ + z³ = a³.

Прислать комментарий     Решение

Задача 76520

Тема:   [ Системы линейных уравнений ]
Сложность: 3
Классы: 8,9

Решить систему уравнений:
   x1 + x2 + x3 = 6,
   x2 + x3 + x4 = 9,
   x3 + x4 + x5 = 3,
   x4 + x5 + x6 = –3,
   x5 + x6 + x7 = –9,
   x6 + x7 + x8 = –6,
   x7 + x8 + x1 = –2,
   x8 + x1 + x2 = 2.

Прислать комментарий     Решение

Задача 79468

Темы:   [ Системы линейных уравнений ]
[ Перебор случаев ]
Сложность: 3
Классы: 8

Даны пять различных положительных чисел, которые можно разбить на две группы так, чтобы суммы чисел в этих группах были одинаковыми. Сколькими способами это можно сделать?

Прислать комментарий     Решение

Задача 79481

Темы:   [ Уравнения высших степеней (прочее) ]
[ Замена переменных ]
[ Разложение на множители ]
Сложность: 3
Классы: 11

Решить уравнение  

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 201]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .