ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найдите количество слов длины 10, состоящих только из букв "а" и "б" и не содержащих в записи двух букв "б" подряд. ![]() ![]() На вершине лесенки, содержащей N ступенек, находится мячик, который начинает прыгать по ним вниз, к основанию. Мячик может прыгнуть на следующую ступеньку, на ступеньку через одну или через 2. (То есть, если мячик лежит на 8-ой ступеньке, то он может переместиться на 5-ую, 6-ую или 7-ую.) Определить число всевозможных "маршрутов" мячика с вершины на землю. Формат входных данных Одно число 0 < N < 31. Формат выходных данных Одно число количество маршрутов. ![]() ![]() |
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 81]
У Пети есть колода из 36 карт (4 масти по 9 карт в каждой). Он выбирает из неё половину карт (какие хочет) и отдаёт Васе, а вторую половину оставляет себе.
Далее каждым ходом игроки по очереди выкладывают на стол по одной карте (по своему выбору, в открытом виде); начинает Петя. Если в ответ на ход Пети Вася смог выложить карту той же масти или того же достоинства, Вася зарабатывает
В пространстве расположены 2n точек, никакие четыре из которых не лежат в одной плоскости. Проведены n² + 1 отрезков с концами в этих точках. Докажите, что проведённые отрезки образуют
Собралось n человек. Некоторые из них знакомы между собой, причём каждые два незнакомых имеют ровно двух общих знакомых, а каждые два знакомых не имеют общих знакомых. Доказать, что каждый из присутствующих знаком с одинаковым числом человек.
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 81] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |