ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На поверхности прямоугольного параллелепипеда { (x, y, z) | 0 ≤ x ≤ L, 0 ≤ y ≤ W, 0 ≤ z ≤ H } отмечены две точки с координатами (x1, y1, z1) и (x2, y2, z2). Существует много путей, проходящих по поверхности параллелепипеда и соединяющих заданные точки. Требуется найти квадрат длины кратчайшего из таких путей.

Входные данные

Файл входных данных содержит (в указанном порядке) следующие 9 целых чисел: L, W, H, x1, y1, z1, x2, y2, z2 . Числа разделяются пробелами и/или символами перевода строки. Каждое из чисел L, W, H не превышает 100.

Выходные данные

Вывести в выходной файл одно целое число – квадрат длины искомого пути.

Пример входного файла

3 4 4
1 2 4
3 2 1

Пример выходного файла

25

Вниз   Решение


Два многоугольника на плоскости заданы координатами своих вершин. Требуется вычислить площадь пересечения этих многоугольников, то есть сумму площадей тех кусков, которые образуются при их пересечении и принадлежат каждому из них. При этом вы можете предполагать, что: 
    А) Многоугольники выпуклые, а координаты их вершин даны в произвольном порядке.
    Б) Хотя бы один из многоугольников невыпуклый, но известно, что у каждого из многоугольников не более одного угла, большего 180 градусов, а координаты вершин даны в порядке обхода по часовой стрелке.
Ваша программа по входным данным должна сама определить, какой из этих двух случаев имеет место.

Входные данные

Первая строка входного файла содержит целое число N – количество вершин в первом многоугольнике (3 ≤ N ≤ 50). Во второй строке записаны координаты этих вершин. Третья и четвертая строки таким же образом задают второй многоугольник. Координаты всех вершин являются целыми числами из диапазона [-32768, 32767].

Выходные данные

Выведите в выходной файл искомую площадь не менее чем с 6 верными значащими цифрами.

Пример входного файла

3
0 3 0 -3 -3 0
5
-1 1 2 1 1 0 2 -1 -1 -1

Пример выходного файла

2.0

ВверхВниз   Решение


Какое минимальное количество спичек необходимо для того, чтобы выложить на плоскости N квадратов со стороной в одну спичку? Спички нельзя ломать и класть друг на друга. Вершинами квадратов должны быть точки, где сходятся концы спичек, а сторонами - сами спички.

Задание

Напишите программу MATCHES, которая по количеству квадратов N, которые необходимо составить, находит минимальное необходимое для этого количество спичек.

Входные данные

Единственная строка входного файла MATCHES.DAT содержит одно целое число N (1≤N≤109).

Выходные данные

Единственная строка выходного файла MATCHES.SOL должна содержать одно целое число - минимальное количество спичек требуемых для составления заданного количества квадратов.

Пример входных и выходных данных

MATCHES.DAT

MATCHES.SOL

4

12

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 694]      



Задача 32023

Темы:   [ Арифметическая прогрессия ]
[ Принцип крайнего (прочее) ]
Сложность: 3-
Классы: 7,8,9

а) Дано шесть натуральных чисел. Все они различны и дают в сумме 22. Найти эти числа и доказать, что других нет.

б) Тот же вопрос про 100 чисел, дающих в сумме 5051.
Прислать комментарий     Решение


Задача 35152

Темы:   [ Геометрическая прогрессия ]
[ Корни высших показателей (прочее) ]
Сложность: 3-
Классы: 8,9,10

Известно, что первый, десятый и сотый члены геометрической прогрессии являются натуральными числами. Верно ли, что 99-ый член этой прогрессии также является натуральным числом?
Прислать комментарий     Решение


Задача 35280

Тема:   [ Последовательности (прочее) ]
Сложность: 3-
Классы: 8,9,10

Докажите, что 1/22+1/32+1/42+…+1/n2<1
Прислать комментарий     Решение


Задача 107710

Тема:   [ Периодичность и непериодичность ]
Сложность: 3-
Классы: 7,8,9

Петя вынимает из мешка чёрные и красные карточки и складывает их в две стопки. Класть карточку на другую карточку того же цвета запрещено. Десятая и одиннадцатая карточки, выложенные Петей, — красные, а двадцать пятая — чёрная. Какого цвета двадцать шестая выложенная карточка?
Прислать комментарий     Решение


Задача 31372

Темы:   [ Арифметическая прогрессия ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 6,7,8

Имеется бесконечная арифметическая прогрессия с натуральными членами. Доказать, что найдётся член, в котором есть 100 девяток подряд.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .