ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Максимальное время работы на одном тесте: 1 секунда

На плоскости задано N векторов - направленных отрезков, для каждого из которых известны координаты начала и конца (вектор, у которого начало и конец совпадают, называется нуль-вектором, можно считать, что нуль-вектор лежит на любой прямой, которая через него проходит). Введем следующие три операции над направленными отрезками на плоскости:

1) Направленные отрезки ненулевой длины, лежащие на пересекающихся прямых, можно заменить на их сумму, причем единственным образом. В этом случае отрезки переносятся вдоль своих прямых так, чтобы их начала совпадали с точкой пересечения прямых, и складываются по правилу сложения векторов (правилу параллелограмма, при этом началом результирующего вектора является точка пересечения прямых):

2) Направленные отрезки, лежащие на одной прямой, также можно заменить на их сумму. Для этого один из отрезков (любой) нужно перенести в начало второго из них и сложить по правилу сложения векторов на прямой:

Это правило применимо и в случае, когда один из векторов, или даже оба, являются нуль-векторами.

Заметим, что если складываемые векторы противоположно направлены и имеют одну и ту же длину, то результатом их сложения является нуль-вектор.

3) В любой точке плоскости можно породить два противоположно направленных отрезка равной (в том числе и нулевой) длины:

Будем говорить, что некоторая система векторов B эквивалентна системе A, если от системы A можно перейти к B с помощью конечной последовательности перечисленных выше операций.

Требуется получить любую систему векторов, эквивалентную заданной, состоящую из минимально возможного числа векторов.

Формат входных данных

В первой строке входного файла f.in записано число N - количество заданных векторов (1 < N ≤ 1000). В каждой из следующих N строк через пробел записаны четыре числа, обозначающие координаты начала и конца каждого из векторов соответственно. Все координаты - целые числа, по модулю не превосходящие 1000.

Формат выходных данных

В первой строке входного файла f.out следует записать число M - количество векторов в полученной системе (1 ≤ MN). В каждой из следующих M строк через пробел должны находиться четыре числа, обозначающие координаты начала и конца каждого из векторов соответственно. Все координаты - вещественные числа, записанные с 6 цифрами после точки.

Примеры

f.in

f.out

3

1 1 1 3

3 3 3 1

5 1 7 1

1

3.000000 3.000000 5.000000 3.000000

2

2 4 5 10

-2 -4 -5 -10

1

2.000000 4.000000 2.000000 4.000000

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 694]      



Задача 32023

Темы:   [ Арифметическая прогрессия ]
[ Принцип крайнего (прочее) ]
Сложность: 3-
Классы: 7,8,9

а) Дано шесть натуральных чисел. Все они различны и дают в сумме 22. Найти эти числа и доказать, что других нет.

б) Тот же вопрос про 100 чисел, дающих в сумме 5051.
Прислать комментарий     Решение


Задача 35152

Темы:   [ Геометрическая прогрессия ]
[ Корни высших показателей (прочее) ]
Сложность: 3-
Классы: 8,9,10

Известно, что первый, десятый и сотый члены геометрической прогрессии являются натуральными числами. Верно ли, что 99-ый член этой прогрессии также является натуральным числом?
Прислать комментарий     Решение


Задача 35280

Тема:   [ Последовательности (прочее) ]
Сложность: 3-
Классы: 8,9,10

Докажите, что 1/22+1/32+1/42+…+1/n2<1
Прислать комментарий     Решение


Задача 107710

Тема:   [ Периодичность и непериодичность ]
Сложность: 3-
Классы: 7,8,9

Петя вынимает из мешка чёрные и красные карточки и складывает их в две стопки. Класть карточку на другую карточку того же цвета запрещено. Десятая и одиннадцатая карточки, выложенные Петей, — красные, а двадцать пятая — чёрная. Какого цвета двадцать шестая выложенная карточка?
Прислать комментарий     Решение


Задача 31372

Темы:   [ Арифметическая прогрессия ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 6,7,8

Имеется бесконечная арифметическая прогрессия с натуральными членами. Доказать, что найдётся член, в котором есть 100 девяток подряд.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .