Страница:
<< 4 5 6 7 8 9 10 [Всего задач: 50]
|
|
Сложность: 5- Классы: 8,9,10
|
На выборах в городскую Думу каждый избиратель, если он приходит
на выборы, отдает голос за себя (если он является кандидатом) и
за тех кандидатов, которые являются его друзьями.
Прогноз социологической службы мэрии считается хорошим, если
в нем правильно предсказано количество голосов, поданных хотя бы
за одного из кандидатов, и нехорошим в противном случае.
Докажите, что при любом прогнозе избиратели могут так явиться на
выборы, что этот прогноз окажется нехорошим.
|
|
Сложность: 5 Классы: 10,11
|
P и Q – подмножества множества выражений вида (a1, a2, ..., an), где ai – натуральные числа, не превосходящие данного натурального числа k (таких выражений всего kn). Для каждого элемента (p1, ..., pn) множества P и каждого элемента (q1, ..., qn) множества Q существует хотя бы один такой номер m, что pm = qm. Докажите, что хотя бы одно из множеств P и Q состоит не более чем из kn–1 элементов для
а) k = 2 и любого натурального n;
б) n = 2 и любого натурального k > 1;
в) произвольного натурального n и произвольного натурального k > 1.
Рассмотрим граф, у которого вершины соответствуют всевозможным трёхэлементным подмножествам множества {1, 2, 3, ..., 2k},
а рёбра проводятся между вершинами, которые соответствуют подмножествам, пересекающимся ровно по одному элементу. Найдите минимальное количество цветов, в которые можно раскрасить вершины графа так, чтобы любые две вершины, соединённые ребром, были разного цвета.
Одна под другой выписаны 2n–1 различных последовательностей из нулей и единиц длины n. Известно, что для любых трёх из выписанных последовательностей найдётся такой номер p, что в p-м разряде у всех трёх стоит 1. Доказать, что в некотором разряде у всех выписанных последовательностей стоит 1 и такой разряд только один.
|
|
Сложность: 5 Классы: 10,11
|
На плоскости рассматривается конечное множество равных, параллельно расположенных квадратов, причем
среди любых
k+1
квадратов найдутся два пересекающихся. Докажите, что это множество можно разбить
не более чем на
2
k-1
непустых подмножеств так, что в каждом подмножестве все квадраты будут иметь общую точку.
Страница:
<< 4 5 6 7 8 9 10 [Всего задач: 50]