Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 288]
|
|
Сложность: 3- Классы: 6,7,8
|
Хулиганы Вася и Петя порвали стенгазету, причём Петя рвал каждый кусок на 5 частей, а Вася на 9. При попытке собрать стенгазету нашли 1988 обрывков. Докажите, что нашли не все кусочки.
На доске написано число 12. В течение каждой минуты число либо умножают, либо делят либо на 2, либо на 3, и результат записывают на доску вместо исходного числа. Докажите, что число, которое будет написано на доске ровно через час, не будет равно 54.
|
|
Сложность: 3- Классы: 5,6,7,8,9
|
Винни-Пух решил позавтракать. Он налил себе стакан чая и добавил сливок из большого кувшина. Но как только он перемешал сливки и чай, то понял, что хочет пить чай без сливок. Недолго думая, он вылил из стакана в кувшин столько же чая со сливками, сколько сначала взял оттуда сливок. Конечно же, при переливании чай от сливок не отделился, и у Винни-Пуха образовались две смеси чая и сливок
– в стакане и в кувшине. Тогда Винни-Пух задумался: чего же получилось больше – чая в кувшине со сливками или сливок в стакане чая? А как думаете вы?
|
|
Сложность: 3- Классы: 6,7,8
|
Сумасшедший кассир меняет любые две монеты на любые три по вашему выбору, а любые три – на любые две. Сможет ли Петя обменять у него 100 монет достоинством 1 рубль на 100 монет достоинством 1 форинт, отдав ему при обмене ровно 2001 монету?
В таблице 8×8 одна из клеток закрашена чёрным цветом, все остальные – белым. Докажите, что с помощью перекрашивания строк и столбцов нельзя добиться того, чтобы все клетки стали белыми. Под перекрашиванием строки или столбца понимается изменение цвета всех клеток в строке или столбце.
Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 288]