Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 288]
Имеется полоска 1×99, разбитая на 99 клеток 1×1, которые раскрашены через одну в чёрный и белый цвет. Разрешается перекрашивать одновременно все клетки любого клетчатого прямоугольника 1×k. За какое наименьшее число перекрашиваний можно сделать всю полоску одноцветной?
Дана шахматная доска. Разрешается перекрашивать в другой цвет сразу все клетки какой-либо горизонтали или вертикали.
Может ли при этом получиться доска, у которой ровно одна чёрная клетка?
|
|
Сложность: 3 Классы: 7,8,9
|
В пробирке находятся марсианские амёбы трёх типов A, B и C. Две амёбы любых двух разных типов могут слиться в одну амёбу третьего типа. После нескольких таких слияний в пробирке оказалась одна амёба. Каков её тип, если исходно амёб типа A было 20 штук, типа B – 21 штука и типа C – 22 штуки?
|
|
Сложность: 3 Классы: 7,8,9
|
Разочарованный вкладчик фонда "Нефтьалмазинвест" разорвал акцию на 8 кусков. Не
удовлетворившись этим, он разорвал один из кусков еще на 8, и т.д.
Могло ли у него получиться 2002 куска?
|
|
Сложность: 3 Классы: 7,8,9
|
По окончании шахматного турнира Незнайка сказал: "Я набрал на 3,5 очка больше, чем потерял". Могут ли его слова быть правдой?
(Победа – 1 очко, ничья – ½ очка, поражение – 0.)
Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 288]