Страница:
<< 66 67 68 69
70 71 72 >> [Всего задач: 366]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В доме $8N$ этажей. В подъезде два лифта, в каждом из которых кнопки расположены в виде прямоугольника $N\times 8$ ($N$ строк, 8 столбцов), но пронумерованы по-разному: в одном «слева направо, снизу вверх», а в другом «снизу вверх, слева направо» (пример для $N=3$ см. на рисунке). Даня нажимает кнопку своего этажа, не глядя на нумерацию, потому что эта кнопка в обоих лифтах расположена на одном и том же месте. На каком этаже он может жить? (Например, для $N=3$ ответ 1 и 24. Требуется найти все возможные варианты в зависимости от $N$.)
17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|
3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
2 | 5 | 8 | 11 | 14 | 17 | 20 | 23 |
1 | 4 | 7 | 10 | 13 | 16 | 19 | 22 |
|
|
|
Сложность: 4- Классы: 9,10,11
|
Предположим, что числа m1, ..., mn
попарно взаимно просты. Докажите, что любую правильную дробь вида
можно представить в виде алгебраической
суммы правильных дробей вида ni/mi (i = 1, ..., n).
|
|
Сложность: 4- Классы: 8,9,10
|
Саша выбрал натуральное число N > 1 и выписал в строчку в порядке возрастания все его натуральные делители: d1 < ... < ds (так что d1 = 1 и
ds = N). Затем для каждой пары стоящих рядом чисел он вычислил их наибольший общий делитель; сумма полученных s – 1 чисел оказалась равной
N – 2. Какие значения могло принимать N?
|
|
Сложность: 4- Классы: 7,8,9
|
Докажите, что можно разбить все множество натуральных чисел на 100 непустых подмножеств так, чтобы в любой тройке a, b, c, для которой a + 99b = c, нашлись два числа из одного подмножества.
|
|
Сложность: 4- Классы: 9,10,11
|
Последовательность неотрицательных рациональных чисел a1, a2, a3, ... удовлетворяет соотношению am + an = amn при любых натуральных m, n.
Докажите, что не все её члены различны.
Страница:
<< 66 67 68 69
70 71 72 >> [Всего задач: 366]