Страница:
<< 61 62 63 64
65 66 67 >> [Всего задач: 492]
|
|
Сложность: 4 Классы: 10,11
|
Дан треугольник ABC, все углы которого меньше φ, где φ < 2π/3.
Докажите, что в пространстве существует точка, из которой все стороны треугольника ABC видны под углом φ.
|
|
Сложность: 4 Классы: 8,9,10
|
Вокруг треугольника ABC с острым углом C описана окружность. На дуге AB, не содержащей точку C, выбрана точка D. Точка D' симметрична точке D относительно прямой AB. Прямые AD' и BD' пересекают стороны BC и AC в точках E и F. Пусть точка C движется по своей дуге AB. Докажите, что центр описанной окружности треугольника CEF движется по прямой.
Даны два треугольника ABC и A'B'C', имеющие общие описанную и вписанную окружности, и точка P, лежащая внутри обоих треугольников.
Докажите, что сумма расстояний от P до сторон треугольника ABC равна сумме расстояний от P до сторон треугольника A'B'C'.
Фиксированы окружность, описанная
около остроугольного треугольника ABC, и вершина C. Ортоцентр
H движется по окружности с центром в точке C. Найдите ГМТ
середин отрезков, соединяющих основания высот, проведенных из вершин
A и B.
|
|
Сложность: 4 Классы: 10,11
|
Дан эллипс $\Gamma$ и его хорда $AB$. Найдите геометрическое место ортоцентров вписанных в $\Gamma$ треугольников $ABC$.
Страница:
<< 61 62 63 64
65 66 67 >> [Всего задач: 492]