Страница:
<< 63 64 65 66
67 68 69 >> [Всего задач: 492]
Найдите геометрическое место точек пересечения
высот треугольников, у которых даны середина одной стороны и
основания высот, опущенных на две другие.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Найдите геометрическое место центров правильных треугольников, стороны которых проходят через три заданные точки A, B, C (то есть на каждой стороне или ее продолжении лежит ровно одна из заданных точек).
|
|
Сложность: 4 Классы: 8,9,10,11
|
На плоскости даны три параллельные прямые.
Найдите геометрическое место центров вписанных окружностей треугольников, вершины которых расположены (по одной) на этих прямых.
В остроугольном неравнобедренном треугольнике
ABC
проведены высоты
AD ,
BE и
CF . Точки
X ,
Y и
Z таковы, что
D ,
E и
F являются серединами
отрезков
BX ,
CY и
AZ соответственно. Докажите,
что центры окружностей, описанных около треугольников
ACX ,
ABY и
BCZ , являются вершинами треугольника,
равного треугольнику
ABC .
|
|
Сложность: 4 Классы: 8,9,10
|
Серединный перпендикуляр к стороне AC неравнобедренного остроугольного треугольника ABC пересекает прямые AB и BC в точках
B1 и B2 соответственно, а серединный перпендикуляр к стороне AB пересекает прямые AC и BC в точках C1 и C2 соответственно. Описанные окружности треугольников BB1B2 и CC1C2 пересекаются в точках P и Q. Докажите, что центр описанной окружности треугольника ABC лежит на прямой PQ.
Страница:
<< 63 64 65 66
67 68 69 >> [Всего задач: 492]