Страница:
<< 26 27 28 29 30 31
32 >> [Всего задач: 157]
|
|
Сложность: 3+ Классы: 10,11
|
В пространстве даны восемь параллельных плоскостей таких, что расстояния между
каждыми двумя соседними равны. На каждой из плоскостей выбирается по точке. Могут ли выбранные точки оказаться вершинами куба.
|
|
Сложность: 4- Классы: 8,9,10
|
На сторонах АС и ВС равностороннего треугольника АВС отмечены точки D и Е соответственно так, что AD = ⅓ AC, CE = ⅓ CE. Отрезки АЕ и BD пересекаются в точке F. Найдите угол BFC.
[Багаж в Московском метрополитене]
|
|
Сложность: 4 Классы: 10,11
|
Будем называть "размером" прямоугольного параллелепипеда сумму трёх его
измерений – длины, ширины и высоты.
Может ли случиться, что в некотором прямоугольном параллелепипеде поместился больший по размеру прямоугольный параллелепипед?
|
|
Сложность: 9 Классы: 9,10,11
|
а) На плоскости даны
n векторов, длина каждого из которых
равна 1. Сумма всех
n векторов равна нулевому вектору. Докажите, что векторы можно занумеровать так, чтобы при всех
k = 1, 2, ...,
n выполнялось следующее условие: длина суммы первых
k векторов не
превышает 3.
б) Докажите аналогичное утверждение для n векторов с суммой 0, длина каждого из которых не превосходит 1.
в) Можно ли заменить число 3 в пункте а) меньшим? Постарайтесь улучшить оценку и в пункте б).
Дана правильная треугольная пирамида SABC, ребро основания которой равно 1. Из вершин A и B основания ABC проведены медианы боковых граней, не имеющие общих точек. Известно, что на прямых, содержащих эти медианы, лежат рёбра некоторого куба. Найдите длину бокового ребра пирамиды.
Страница:
<< 26 27 28 29 30 31
32 >> [Всего задач: 157]