Страница:
<< 106 107 108 109
110 111 112 >> [Всего задач: 1111]
|
|
Сложность: 4- Классы: 8,9,10,11
|
На шахматной доске стоят восемь не бьющих друг друга ладей. Докажите, что можно каждую из них передвинуть ходом коня так, что они по-прежнему не будут бить друг друга. (Все восемь ладей передвигаются "одновременно", то есть если, например, две ладьи бьют друг друга ходом коня, то их можно поменять местами.)
|
|
Сложность: 4- Классы: 9,10,11
|
В однокруговом турнире участвуют 10 шахматистов. Через какое наименьшее количество туров может оказаться так, что единоличный победитель уже выявился досрочно? (В каждом туре участники разбиваются на пары. Выигрыш – 1 очко, ничья – 0,5 очка, поражение – 0).
В клетки таблицы размером 9×9 расставили все натуральные числа от 1 до 81. Вычислили произведения чисел в каждой строке таблицы и получили набор из девяти чисел. Затем вычислили произведения чисел в каждом столбце таблицы и также получили набор из девяти чисел.
Могли ли полученные наборы оказаться одинаковыми?
|
|
Сложность: 4- Классы: 6,7,8
|
Незнайка рисует замкнутые пути внутри прямоугольника 5×8, идущие по диагоналям прямоугольников 1×2. На рисунке изображён пример пути, проходящего по 12 таким диагоналям. Помогите Незнайке нарисовать путь как можно длиннее.
|
|
Сложность: 4- Классы: 10,11
|
Дана таблица (см. рис.).
Можно в ней переставлять строки, а также столбцы (в любом порядке).
Сколько различных таблиц можно получить таким образом из данной таблицы?
Страница:
<< 106 107 108 109
110 111 112 >> [Всего задач: 1111]