ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Докажите тождество   (ax + by + cz)² + (bx + cy + az)² + (cx + ay + bz)² = (cx + by + az)² + (bx + ay + cz)² + (ax + cy + bz)².

Вниз   Решение


Докажите равенство   (a2 + b2)(u2 + v2) = (au + bv)2 + (av – bu)2.

ВверхВниз   Решение


Два различных числа x и y (не обязательно целых) таковы, что  x² – 2000x = y² – 2000y.  Найдите сумму чисел x и y.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 233]      



Задача 104080

Темы:   [ Обыкновенные дроби ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 2-
Классы: 5,6,7

Петя тратит ⅓ своего времени на игру в футбол, ⅕ – на учебу в школе, ⅙ – на просмотр кинофильмов, 1/70 – на решение олимпиадных задач и ⅓ – на сон. Можно ли так жить?

Прислать комментарий     Решение

Задача 60839

Тема:   [ Периодические и непериодические дроби ]
Сложность: 2
Классы: 6,7,8

Представьте следующие рациональные числа в виде десятичных дробей:
  а) 1/7;   б) 2/7;   в) 1/14;   г) 1/17.

Прислать комментарий     Решение

Задача 66540

Тема:   [ Дроби (прочее) ]
Сложность: 2
Классы: 6

а) Впишите в клеточки четыре различные цифры, чтобы произведение дробей равнялось 20/21.

Решите эту задачу для трёх других арифметических действий:
б) деления;
в) вычитания;
г) сложения.
Прислать комментарий     Решение


Задача 88278

Темы:   [ Обыкновенные дроби ]
[ Арифметика. Устный счет и т.п. ]
[ Инварианты ]
Сложность: 2
Классы: 5,6,7

Какое число нужно вычесть из числителя дроби 537/463 и прибавить к знаменателю, чтобы после сокращения получить 1/9?

Прислать комментарий     Решение

Задача 102817

Тема:   [ Обыкновенные дроби ]
Сложность: 2
Классы: 6,7

Как разделить семь яблок между 12 мальчиками, если ни одно яблоко нельзя резать более чем на пять частей?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 233]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .