Страница:
<< 77 78 79 80
81 82 83 >> [Всего задач: 694]
|
|
Сложность: 3+ Классы: 8,9,10
|
{an} – последовательность чисел между 0 и 1, в которой следом за x идёт 1 – |1 – 2x|.
а) Докажите, что если a1 рационально, то
последовательность, начиная с некоторого места, периодическая.
б) Докажите, что если последовательность, начиная с некоторого
места, периодическая, то a1 рационально.
|
|
Сложность: 3+ Классы: 8,9,10
|
Можно ли из последовательности 1, ½, ⅓, ... выбрать (сохраняя порядок)
а) сто чисел,
б) бесконечную подпоследовательность чисел,
из которых каждое, начиная с третьего, равно разности двух предыдущих (ak = ak–2 – ak–1)?
|
|
Сложность: 3+ Классы: 7,8,9
|
Последовательность определяется так: первые её члены – 1, 2, 3, 4, 5. Далее каждый следующий (начиная с 6-го) равен произведению всех предыдущих членов
минус 1. Докажите, что сумма квадратов первых 70 членов последовательности равна их произведению.
Докажите, что число
а) 9797,
б) 199717
нельзя представить в виде суммы кубов нескольких идущих подряд натуральных чисел.
|
|
Сложность: 3+ Классы: 7,8,9
|
На какие простые числа, меньшие 17, делится число 20022002 − 1?
Страница:
<< 77 78 79 80
81 82 83 >> [Всего задач: 694]