Страница:
<< 78 79 80 81
82 83 84 >> [Всего задач: 694]
|
|
Сложность: 3+ Классы: 8,9,10
|
Таблица имеет форму квадрата со стороной длины n. В первой строчке таблицы стоит одно число – 1. Во второй – два числа – две двойки, в третьей – три четвёрки, и т.д.:
(здесь нарисован квадрат 4×4). В каждой следующей строчке стоит следующая степень двойки. Длина строчек сначала растёт, а затем убывает так, чтобы получился квадрат. Докажите, что сумма всех чисел таблицы есть квадрат некоторого целого числа.
|
|
Сложность: 3+ Классы: 8,9,10
|
Бесконечная последовательность чисел xn определяется условиями: xn+1 = 1 – |1 – 2xn|, причём 0 ≤ x1 ≤ 1.
Докажите, что последовательность, начиная с некоторого места, периодическая а) в том б) и только в том случае, когда x1 рационально.
|
|
Сложность: 3+ Классы: 7,8,9
|
Некоторые из чисел
a1,
a2, ...,
a200 написаны синим
карандашом, а остальные — красным. Если стереть все красные числа, то
останутся все натуральные числа от 1 до 100, записанные в порядке возрастания.
Если же стереть все синие числа, то останутся все натуральные числа от 100 до 1,
записанные в порядке убывания. Докажите, что среди чисел
a1,
a2, ...,
a100 содержатся все натуральные числа от 1 до 100
включительно.
|
|
Сложность: 3+ Классы: 9,10,11
|
При разложении чисел A и B в бесконечные десятичные дроби длины
минимальных периодов этих дробей равны 6 и 12 соответственно. Чему может быть
равна длина минимального периода числа A + B?
|
|
Сложность: 3+ Классы: 8,9,10
|
Из таблицы
выбраны
a чисел так, что никакие два из выбранных чисел не стоят в одной строке или в одном столбце таблицы. Вычислить сумму выбранных чисел.
Страница:
<< 78 79 80 81
82 83 84 >> [Всего задач: 694]