ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 694]      



Задача 107677

Темы:   [ Геометрическая прогрессия ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Числовые таблицы и их свойства ]
Сложность: 3+
Классы: 8,9,10

Таблица имеет форму квадрата со стороной длины n. В первой строчке таблицы стоит одно число – 1. Во второй – два числа – две двойки, в третьей – три четвёрки, и т.д.:

(здесь нарисован квадрат 4×4). В каждой следующей строчке стоит следующая степень двойки. Длина строчек сначала растёт, а затем убывает так, чтобы получился квадрат. Докажите, что сумма всех чисел таблицы есть квадрат некоторого целого числа.

Прислать комментарий     Решение

Задача 107761

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
[ Рациональные и иррациональные числа ]
[ Обыкновенные дроби ]
[ Обратный ход ]
[ Уравнения с модулями ]
Сложность: 3+
Классы: 8,9,10

Автор: Шабат Г.Б.

Бесконечная последовательность чисел xn определяется условиями:   xn+1 = 1 – |1 – 2xn|,  причём  0 ≤ x1 ≤ 1.
Докажите, что последовательность, начиная с некоторого места, периодическая  а) в том  б) и только в том случае, когда x1 рационально.

Прислать комментарий     Решение

Задача 107848

Темы:   [ Отношение порядка ]
[ Последовательности (прочее) ]
Сложность: 3+
Классы: 7,8,9

Некоторые из чисел a1, a2, ..., a200 написаны синим карандашом, а остальные — красным. Если стереть все красные числа, то останутся все натуральные числа от 1 до 100, записанные в порядке возрастания. Если же стереть все синие числа, то останутся все натуральные числа от 100 до 1, записанные в порядке убывания. Докажите, что среди чисел a1, a2, ..., a100 содержатся все натуральные числа от 1 до 100 включительно.
Прислать комментарий     Решение


Задача 107989

Темы:   [ Периодические и непериодические дроби ]
[ Периодичность и непериодичность ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 9,10,11

При разложении чисел A и B в бесконечные десятичные дроби длины минимальных периодов этих дробей равны 6 и 12 соответственно. Чему может быть равна длина минимального периода числа  A + B?

Прислать комментарий     Решение

Задача 109019

Темы:   [ Числовые таблицы и их свойства ]
[ Арифметическая прогрессия ]
Сложность: 3+
Классы: 8,9,10

Из таблицы

выбраны a чисел так, что никакие два из выбранных чисел не стоят в одной строке или в одном столбце таблицы. Вычислить сумму выбранных чисел.

Прислать комментарий     Решение

Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .