Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 92]
|
|
Сложность: 4 Классы: 10,11
|
Старый калькулятор II. Производная
функции ln
x при
x = 1 равна 1. Отсюда
Воспользуйтесь этим фактом для приближенного вычисления
натурального логарифма числа
N. Как и в задаче
9.51
,
разрешается использовать стандартные арифметические действия и
операцию извлечения квадратного корня.
|
|
Сложность: 4 Классы: 10,11
|
В круглый бокал, осевое сечение которого — график функции
y =
x4, опускают
вишенку — шар радиуса
r. При каком наибольшем
r шар коснется нижней
точки дна? (Другими словами, каков максимальный радиус
r круга, лежащего в
области
yx4 и содержащего начало координат?)
|
|
Сложность: 4 Классы: 9,10,11
|
Многочлен P(x) степени n имеет n различных действительных корней. Какое наибольшее число его коэффициентов может равняться нулю?
|
|
Сложность: 4 Классы: 10,11
|
Основание пирамиды – квадрат. Высота пирамиды пересекает диагональ
основания. Найдите наибольший объём такой пирамиды, если периметр
диагонального сечения, содержащего высоту пирамиды, равен 5.
Учитель написал на доске в алфавитном порядке все возможные 2n слов, состоящих из n букв А или Б. Затем он заменил каждое слово на произведение n множителей, исправив каждую букву А на x, а каждую букву Б – на (1 – x), и сложил между собой несколько первых из этих многочленов от x. Докажите, что полученный многочлен представляет собой либо постоянную, либо возрастающую на отрезке [0, 1] функцию от x.
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 92]