Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 91]
|
|
Сложность: 4 Классы: 8,9,10
|
Докажите, что в правильном двенадцатиугольнике A1A2...A12 диагонали A1A5, A2A6, A3A8 и A4A11 пересекаются в одной точке.
|
|
Сложность: 4 Классы: 7,8,9
|
Докажите, что остроугольный треугольник полностью
покрывается тремя квадратами, построенными на его
сторонах как на диагоналях.
|
|
Сложность: 4 Классы: 9,10,11
|
Дан треугольник ABC. Точка B1 делит пополам длину ломаной ABC (составленной из отрезков AB и BC), точка C1 делит пополам длину ломаной ACB, точка A1 делит пополам длину ломаной CAB. Через точки A1, B1 и C1 проводятся прямые
lA, lB и lC, параллельные биссектрисам углов BAC, ABC и ACB соответственно. Докажите, что прямые lA, lB и lC пересекаются в
одной точке.
Около остроугольного треугольника ABC описана окружность с центром O. Перпендикуляры, опущенные из точки O на стороны треугольника, продолжены до пересечения с окружностью в точках K, M и P. Докажите, что где Q – центр вписанной окружности треугольника ABC.
|
|
Сложность: 4 Классы: 8,9,10
|
На сторонах BC, AC и AB остроугольного треугольника ABC взяты точки A1, B1 и C1 так, что лучи A1A, B1B и С1C являются биссектрисами углов треугольника
A1B1C1. Докажите, что AA1, BB1 и СС1 – высоты треугольника ABC.
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 91]