Страница:
<< 39 40 41 42
43 44 45 >> [Всего задач: 290]
[Теорема Морли]
|
|
Сложность: 5 Классы: 9,10,11
|
В треугольнике
ABC проведены триссектрисы (лучи, делящие углы на три равные части). Ближайшие к стороне
BC триссектрисы углов
B и
C пересекаются в точке
A1; аналогично определим точки
B1 и
C1 (см. рис.). Докажите, что треугольник
A1B1C1 равносторонний.
Дан правильный треугольник
ABC . Через вершину
B
проводится произвольная прямая
l , а через точки
A
и
C проводятся прямые, перпендикулярные прямой
l ,
пересекающие её в точках
D и
E . Затем, если точки
D и
E различны, строятся правильные треугольники
DEP и
DET , лежащие по разные стороны от прямой
l .
Найдите геометрическое место точек
P и
T .
|
|
Сложность: 6 Классы: 8,9,10,11
|
Множество, состоящее из конечного числа точек плоскости, обладает следующим свойством: для любых двух его точек
A и B существует такая
точка С этого множества, что треугольник
ABC равносторонний. Сколько точек может содержать такое множество?
|
|
Сложность: 6 Классы: 9,10,11
|
Докажите, что существует такое натуральное число
n , что если правильный треугольник со стороной
n разбить прямыми, параллельными его сторонам, на
n2 правильных треугольников со стороной 1,
то среди вершин этих треугольников можно выбрать
1993
n точек, никакие три из которых не являются
вершинами правильного треугольника (не обязательно со сторонами, параллельными сторонам исходного
треугольника).
|
|
Сложность: 3- Классы: 7,8,9
|
Плоскость раскрашена в два цвета. Докажите, что найдутся две точки одного цвета, расстояние между которыми равно 1.
Страница:
<< 39 40 41 42
43 44 45 >> [Всего задач: 290]