Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 180]
На плоскости даны треугольник ABC и такие точки D и E, что ∠ADB = ∠BEC = 90°.
Докажите, что длина отрезка DE не превосходит полупериметра треугольника ABC.
На стороне AC треугольника ABC выбрана точка D, причём DC = 2AD, O – центр вписанной окружности
треугольника DBC, E – точка касания этой окружности с прямой BD. Оказалось, что BD = BC. Докажите, что AE || DO.
В прямоугольном треугольнике ABC с прямым углом при вершине B провели медиану BM. Вписанная окружность треугольника ABM,
касается сторон AB и AM в точках K и L. Известно, что прямые KL и BM параллельны. Найдите угол C.
Отрезки AM и BH – соответственно медиана и высота остроугольного треугольника ABC. Известно, что AH = 1 и 2∠MAC = ∠MCA. Найдите сторону BC.
На гипотенузе AB прямоугольного треугольника ABC выбрана точка K, для которой CK = BC. Отрезок CK пересекает биссектрису AL в её середине.
Найдите углы треугольника ABC.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 180]