Страница:
<< 59 60 61 62
63 64 65 >> [Всего задач: 2393]
|
|
Сложность: 4 Классы: 9,10,11
|
Маленький Петя подпилил все ножки у квадратной табуретки и четыре отпиленных
кусочка потерял. Оказалось, что длины всех кусочков различны, и что табуретка
после этого стоит на полу, пусть наклонно, но по-прежнему касаясь пола всеми
четырьмя концами ножек. Дедушка решил починить табуретку, однако нашёл только
три кусочка с длинами 8, 9 и 10 см. Какой длины может быть четвёртый кусочек?
Докажите, что медианы тетраэдра (отрезки, соединяющие
вершины с точками пересечения медиан противоположных
граней) и отрезки, соединяющие середины противоположных
рёбер, пересекаются в одной точке.
Теорема косинусов для трёхгранного угла.
Пусть
α ,
β ,
γ – плоские углы
трёхгранного угла
SABC с вершиной
S , противолежащие
рёбрам
SA ,
SB ,
SC соответственно;
A ,
B ,
C –
двугранные углы при этих рёбрах. Докажите, что
cos A =
,
cos B =
,
cos C =
.
|
|
Сложность: 4 Классы: 10,11
|
Докажите, что две прямые, параллельные одной и той же прямой,
параллельны.
|
|
Сложность: 4 Классы: 10,11
|
Точки
M ,
N и
K принадлежат соответственно рёбрам
CD ,
BC и
AA1
параллелепипеда
ABCDA1
B1
C1
D1
, причём
CM = MD ,
BN:NC = 2
:1
,
AK:KA1
= 1
:2
. Постройте сечение параллелепипеда плоскостью, проходящей через
точки
M ,
N ,
K . В каком отношении эта плоскость делит ребро
BB1
и
диагональ
AC1
параллелепипеда?
Страница:
<< 59 60 61 62
63 64 65 >> [Всего задач: 2393]