ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 37]      



Задача 78485

Темы:   [ Тригонометрические неравенства ]
[ Тождественные преобразования (тригонометрия) ]
[ Обратные тригонометрические функции ]
Сложность: 4
Классы: 10,11

Положительные числа x, y, z обладают тем свойством, что

arctg x + arctg y + arctg z < $\displaystyle \pi$.

Доказать, что сумма этих чисел больше их произведения.
Прислать комментарий     Решение

Задача 109453

Темы:   [ Тригонометрические неравенства ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 4
Классы: 10,11

Пусть α и β – острые углы такие, что sin2α + sin2β < 1 . Докажите, что sin2α + sin2β < sin2(α + β) .
Прислать комментарий     Решение


Задача 109711

Темы:   [ Тригонометрические неравенства ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4
Классы: 10,11

Автор: Храбров А.

Докажите неравенство   sinn2x + (sinnx – cosnx)² ≤ 1.

Прислать комментарий     Решение

Задача 110210

Темы:   [ Тригонометрические неравенства ]
[ Периодичность и непериодичность ]
Сложность: 4
Классы: 9,10,11

Докажите, что для каждого x такого, что sin x 0 , найдется такое натуральное n , что | sin nx| .
Прислать комментарий     Решение


Задача 115406

Темы:   [ Тригонометрические неравенства ]
[ Тригонометрический круг ]
[ Количество и сумма делителей числа ]
Сложность: 4
Классы: 10,11

Автор: Трушин Б.

Сколько раз функция   f(x) = cos x cos x/2 cos x/3 ... cos x/2009   меняет знак на отрезке  [0, 2009π/2] ?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 37]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .