Страница:
<< 64 65 66 67
68 69 70 >> [Всего задач: 368]
|
|
Сложность: 4- Классы: 8,9,10
|
Найти такие целые числа x, y, z и t, что x² + y² + z² + t² = 2xyzt.
|
|
Сложность: 4- Классы: 7,8,9
|
Сумма 100 натуральных чисел, каждое из которых не больше 100, равна 200.
Доказать, что из них можно выбрать несколько чисел, сумма которых равна 100.
|
|
Сложность: 4- Классы: 8,9,10
|
Докажите, что уравнение x³ + y³ = 4(x²y + xy² + 1) не имеет решений в целых числах.
|
|
Сложность: 4- Классы: 7,8,9
|
Найдите все такие простые числа p, q, r и s, что их сумма – простое число. а числа p² + qs и p² + qr – квадраты натуральных чисел. (Числа p, q, r и s предполагаются различными.)
|
|
Сложность: 4- Классы: 8,9,10
|
Из промежутка (22n, 23n) выбрано 22n–1 + 1 нечётное число.
Докажите, что среди выбранных чисел найдутся два, квадрат каждого из которых не делится на другое.
Страница:
<< 64 65 66 67
68 69 70 >> [Всего задач: 368]