ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В середины сторон треугольника ABC помещены точки, массы которых равны длинам сторон. Докажите, что центр масс этой системы точек расположен в центре вписанной окружности треугольника с вершинами в серединах сторон треугольника ABC. Замечание. Центр масс системы точек, рассматриваемой в задаче 14.12.1 совпадает с центром масс фигуры, изготовленной из трех тонких стержней одинаковой толщины. Действительно, при нахождении центра масс стержень можно заменить на точку, расположенную в середине стержня и имеющую массу, равную массе стержня. Ясно также, что масса стержня пропорциональна его длине. ![]() |
Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 508]
а) Из произвольной точки M внутри правильного n-угольника проведены перпендикуляры MK1, MK2, ..., MKn к его сторонам (или их продолжениям). Докажите, что б) Докажите, что сумма векторов, проведённых из любой точки M
внутри правильного тетраэдра перпендикулярно к его граням, равна
а) величина b1...bn/(a1...an) не зависит от выбора прямой l; б) величина a1a3...a2m - 1/(a2a4...a2m) не зависит от выбора прямой l, если n = 2m.
Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 508] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |