Версия для печати
Убрать все задачи
На координатной плоскости расположены четыре фишки, центры которых имеют целочисленные координаты.
Разрешается сдвинуть любую фишку на вектор, соединяющий центры любых двух из остальных фишек.
Докажите, что несколькими такими перемещениями можно совместить любые две наперед заданные фишки.

Решение
На берегу круглого озера растут 6 сосен. Известно, что если взять такие два треугольника, что вершины одного совпадают с тремя из сосен, а вершины другого – с тремя другими, то в середине отрезка, соединяющего точки пересечения высот этих треугольников, на дне озера находится клад. Неизвестно только, как нужно разбить данные шесть точек на две тройки. Сколько раз придётся опуститься на дно озера, чтобы наверняка отыскать клад?


Решение
Город представляет собой бесконечную клетчатую плоскость (линии – улицы,
клеточки – кварталы). На одной улице через каждые 100 кварталов на перекрестках стоит по милиционеру. Где-то в городе есть бандит (местонахождение его неизвестно, но перемещается он только по улицам). Цель милиции – увидеть
бандита. Есть ли у милиции способ (алгоритм) наверняка достигнуть своей цели?
(Максимальные скорости милиции и бандита какие-то конечные, но не известные нам
величины, милиция видит вдоль улиц во все стороны на бесконечное расстояние.)


Решение
а) Может ли шар некоторого радиуса высекать на гранях какого-нибудь правильного тетраэдра круги радиусов 1, 2, 3 и 4?
б) Тот же вопрос для шара радиуса 5.

Решение