Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 222]
|
|
Сложность: 4 Классы: 9,10,11
|
Дан треугольник ABC. В нём H – точка пересечения высот,
I – центр вписанной окружности, O – центр описанной
окружности, K – точка касания вписанной окружности со стороной BC. Известно, что отрезки IO || BC. Докажите, что отрезки AO || HK.
|
|
Сложность: 4 Классы: 9,10,11
|
AA1 и BB1 – высоты остроугольного неравнобедренного треугольника ABC. Известно, что отрезок A1B1 пересекает среднюю линию, параллельную AB, в точке C'. Докажите, что отрезок CC' перпендикулярен прямой, проходящей через точку пересечения высот и центр описанной окружности треугольника ABC.
Высоты
AA1
и
CC1
остроугольного треугольника
ABC
пересекаются в точке
H . Точка
B0
– середина стороны
AC . Докажите, что точка пересечения прямых, симметричных
BB0
и
HB0
относительно биссектрис углов
ABC и
AHC соответственно, лежит на прямой
A1
C1
.
|
|
Сложность: 4 Классы: 9,10,11
|
На диагонали BD вписанного четырёхугольника ABCD выбрана такая точка K, что ∠AKB = ∠ADC. Пусть I и I' – центры вписанных окружностей треугольников ACD и ABK соответственно. Отрезки II' и BD пересекаются в точке X. Докажите, что точки A, X, I, D лежат на одной окружности.
Внутри треугольника
ABC выбрана произвольная точка
X . Лучи
AX ,
BX и
CX пересекают описанную
около треугольника
ABC окружность в точках
A1
,
B1
и
C1
соответственно. Точка
A2
симметрична точке
A1
относительно середины стороны
BC . Аналогично определяются точки
B2
и
C2
.
Докажите, что найдётся такая фиксированная точка
Y ,
не зависящая от выбора
X , что точки
Y ,
A2
,
B2
и
C2
лежат на одной окружности.
Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 222]