ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В трапеции ABCD отрезки AB и CD являются основаниями. Диагонали трапеции пересекаются в точке K.
Найдите площадь треугольника AKD, если  AB = 27,  DC = 18,  AD = 3,  BC = 6.

Вниз   Решение


Для игры «Отравленный пирог» используется прямоугольный пирог, разделенный на M «строк» горизонтальными разрезами и на N «столбцов» – вертикальными. Таким образом, пирог должен быть разбит на M × N клеток, правая нижняя из которых «отравлена». Играют двое игроков, ходы делаются по очереди. Каждый ход заключается в том, что игрок выбирает одну из еще не съеденных клеток пирога и съедает все клетки, расположенные левее и выше выбранной (в том числе и выбранную). Проигрывает тот, кто съедает отравленную клетку.

Требуется написать программу, которая по заданной игровой позиции определяет все возможные выигрышные ходы для начинающего в этой позиции. 

Входные данные

Данные во входном файле расположены в следующем порядке: M, N (1 ≤ M, N ≤ 9), X1, ..., XM. Здесь Xi – число оставшихся клеток в i-м снизу горизонтальном ряду. Все числа во входном файле разделяются пробелами и/или символами перевода строки.

Выходные данные

В первую строку выходного файла необходимо вывести количество различных выигрышных ходов К, а в последующие K строк – сами выигрышные ходы.

Каждый ход задается парой чисел (i, j), где i – номер (снизу) горизонтального ряда, а j – номер (справа) вертикального ряда, которому принадлежит выбранная клетка (1 ≤ i ≤ M, 1 ≤ j ≤ N).

Пример входного файла

3 5
5 4 3

Пример выходного файла

1
3 1

ВверхВниз   Решение


Имеются три пробирки, вместимостью 100 миллилитров каждая. Первые две пробирки имеют риски, одинаковые на обеих пробирках. Возле каждой риски надписано целое число миллилитров, которое вмещается в часть пробирки от дна до этой риски (см. рисунок).

Изначально первая пробирка содержит 100 миллилитров пива, а остальные две пусты. Требуется написать программу, которая выясняет, можно ли отделить в третьей пробирке один миллилитр пива, и если да, то находит минимально необходимое для этого число переливаний. Пиво можно переливать из одной пробирки в другую до тех пор, пока либо первая из них не станет пустой, либо одна из пробирок не окажется заполненной до какой-либо риски.



Входные данные

В первой строке входного файла содержится число рисок N (1 ≤ N ≤ 20), имеющихся на каждой из первых двух пробирок. Затем в порядке возрастания следуют N целых чисел V1 , ..., VN (1 ≤ Vi ≤ 100), приписанных рискам. Последняя риска считается сделанной на верхнем крае пробирок (VN = 100).

Выходные данные

В первой строке выходного файла должна содержаться строка «YES», если в третьей пробирке возможно отделить один миллилитр пива, и «NO» – в противном случае. В случае ответа «YES» во вторую строку необходимо вывести искомое количество переливаний.

Пример входного файла

4
13 37 71 100

Пример выходного файла

YES
8

ВверхВниз   Решение


На шахматной доске стоит кубик, занимая своим основанием в точности одно из полей доски. На его гранях написаны неотрицательные целые числа, не превосходящие 1000. Кубик можно перемещать на смежные поля, перекатывая через соответствующее ребро в основании. При движении кубика вычисляется сумма чисел, попавших в его основание (каждое число считается столько раз, сколько раз кубик оказывался лежащим на данной грани).

Требуется найти такой путь движения кубика между двумя заданными полями доски, при котором вычисленная сумма будет минимальной. Числа, стоящие в основании кубика в начальной и конечной позициях, также входят в сумму.

Входные данные
Во входном файле через пробел записаны координаты начального и конечного полей и 6 чисел, написанных на передней (в начальный момент), задней, верхней, правой, нижней и левой гранях кубика соответственно. Координаты полей указываются в стандартной шахматной нотации (см. пример). Начальное и конечное поля различны.

Выходные данные

Выведите в выходной файл минимально возможную сумму и соответствующий ей путь. Путь должен быть задан последовательным перечислением координат полей, по которым движется кубик (включая начальное и конечное поля). Координаты полей записываются в том же формате, что и во входных данных, и разделяются пробелом.

Пример входного файла

e2 e3 0 8 1 2 1 1

Пример выходного файла

5 e2 d2 d1 e1 e2 e3

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 73679

Темы:   [ Разрезания на параллелограммы ]
[ Соизмеримость и несоизмеримость ]
[ Вспомогательная раскраска (прочее) ]
[ Деление с остатком ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 6
Классы: 9,10,11

Найдите необходимые и достаточные условия, которым должны удовлетворять числа a, b, α и β, чтобы прямоугольник размером a×b можно было разрезать на прямоугольники размером α×β. Например, можно ли прямоугольник размером 50×60 разрезать на прямоугольники размером
а) 20×15;   б) 5×8;   в) 6,25×15;   г)  

Прислать комментарий     Решение

Задача 34877

Темы:   [ Геометрические неравенства (прочее) ]
[ Разрезания на параллелограммы ]
Сложность: 3
Классы: 7,8,9

Квадрат со стороной 1 разрезали на прямоугольники, у каждого из которых отметили одну сторону. Докажите, что сумма длин всех отмеченных сторон не может быть меньше 1.
Прислать комментарий     Решение


Задача 60598

 [Геометрическая интерпретация алгоритма Евклида]
Темы:   [ Цепные (непрерывные) дроби ]
[ Разрезания на параллелограммы ]
Сложность: 3
Классы: 8,9,10,11

Работу алгоритма Евклида (см. задачу 60488) можно представить следующим образом. В прямоугольник размерами  m0×m1  (m1m0)  укладываем a0 квадратов размера   m1×m1,  в оставшийся прямоугольник размерами  m1×m2  (m2m1)  укладываем a1 квадратов размера  m2×m2,  и т. д. до тех пор, пока весь прямоугольник не покроется квадратами. Выразите общее число квадратов через элементы цепной дроби числа  m0/m1.

Прислать комментарий     Решение

Задача 61342

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Разрезания на параллелограммы ]
Сложность: 3
Классы: 8,9,10

На рисунках изображены разбиения прямоугольников на квадраты. Найдите стороны этих квадратов, если в первом случае сторона наименьшего квадрата равна 1, а во втором — 2.
а)
\begin{picture}
(75,65)\put(0,0){\line(1,0){65}}\put(0,55){\line(1,0){65}}
\pu...
...e(0,1){20}}\put(65,0){\line(0,1){55}}
\put(30,20){\line(0,1){35}}
\end{picture}

б)
\begin{picture}
(55,65)\put(0,0){\line(1,0){69}}\put(0,61){\line(1,0){69}}\put(...
...(0,1){25}}\put(35,36){\line(0,1){10}}
\put(28,33){\line(0,1){28}}
\end{picture}

Прислать комментарий     Решение

Задача 65930

Темы:   [ Наглядная геометрия в пространстве ]
[ Разрезания на параллелограммы ]
[ Развертка помогает решить задачу ]
Сложность: 3+
Классы: 10,11

Легко оклеить поверхность куба шестью ромбами (например, шестью квадратами). А можно ли оклеить поверхность куба (без щелей и наложений) менее чем шестью ромбами (не обязательно одинаковыми)?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .