ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На кошачьей выставке в ряд сидят 10 котов и 19 кошек, причём рядом с каждой кошкой сидит более толстый кот. ![]() ![]() Клетки доски 9×9 раскрасили в шахматном порядке в чёрный и белый цвета (угловые клетки белые). Какое наименьшее число ладей нужно поставить на эту доску, чтобы все белые клетки оказались под боем этих ладей? (Под боем ладьи считаются все клетки строки и столбца, в которых находится ладья.) ![]() ![]() |
Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 368]
В таблицу n×n записаны n² чисел, сумма которых неотрицательна. Докажите, что можно переставить столбцы таблицы так, что сумма n чисел по диагонали, идущей из левого нижнего угла в правый верхний, будет неотрицательна.
При каком n > 1 может случиться так, что в компании из n + 1 девочек и n мальчиков все девочки знакомы с разным числом мальчиков, а все мальчики – с одним и тем же числом девочек?
Пятеро друзей скинулись на покупку. Могло ли оказаться так, что каждые два из них внесли менее одной трети общей стоимости?
Существуют ли пять таких двузначных составных чисел, что каждые два из них взаимно просты?
Докажите, что среди 51 целого числа найдутся два, квадраты которых дают одинаковые остатки при делении на 100.
Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 368] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |