Страница:
<< 54 55 56 57
58 59 60 >> [Всего задач: 367]
|
|
Сложность: 3+ Классы: 8,9,10
|
Из клетчатой бумаги вырезан квадрат 17×17. В клетках квадрата произвольным образом написаны числа 1, 2, 3, ..., 70 по одному и только одному числу в каждой клетке. Доказать, что существуют такие четыре различные клетки с центрами в точках A, B, C, D, что AB = CD, AD = BC и сумма чисел, стоящих в клетках с центрами в A и C, равна сумме чисел в клетках с центрами B и D.
|
|
Сложность: 3+ Классы: 8,9,10
|
Первый член и разность арифметической прогрессии — натуральные числа. Доказать, что
найдётся такой член прогрессии, в записи которого участвует цифра 9.
|
|
Сложность: 3+ Классы: 6,7,8
|
На кошачьей выставке в ряд сидят 10 котов и 19 кошек, причём рядом с каждой кошкой сидит более толстый кот.
Докажите, что рядом с каждым котом сидит кошка, которая тоньше него.
|
|
Сложность: 3+ Классы: 7,8,9
|
На фестивале камерной музыки собралось шесть музыкантов. На каждом концерте
часть музыкантов выступает, а остальные слушают их из зала. За какое наименьшее
число концертов каждый из шести музыкантов сможет послушать (из зала) всех
остальных?
|
|
Сложность: 3+ Классы: 7,8,9
|
Числа 1, 2, 3, ..., 25 расставляют в таблицу 5×5 так, чтобы в каждой строке числа были расположены в порядке возрастания.
Какое наибольшее и какое наименьшее значение может иметь сумма чисел в третьем столбце?
Страница:
<< 54 55 56 57
58 59 60 >> [Всего задач: 367]