ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Четырёхугольник $ABCD$ вписан в окружность с центром $O$. Пусть $P$ – точка пересечения его диагоналей, а точки $M$ и $N$ – середины сторон $AB$ и $CD$ соответственно. Окружность $OPM$ вторично пересекает отрезки $AP$ и $BP$ в точках $A_1$ и $B_1$ соответственно, а окружность $OPN$ вторично пересекает отрезки $CP$ и $DP$ в точках $C_1$ и $D_1$ соответственно. Докажите, что площади четырёхугольников $AA_1B_1B$ и $CC_1D_1D$ равны.

Вниз   Решение


Четырёхугольник ABCD таков, что в него можно вписать и около него можно описать окружности. Диаметр описанной окружности совпадает с диагональю AC. Докажите, что модули разностей длин его противоположных сторон равны.

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 93]      



Задача 57199

Тема:   [ Метод ГМТ ]
Сложность: 4
Классы: 8,9

Даны точка A и окружность S. Проведите через точку A прямую так, чтобы хорда, высекаемая окружностью S на этой прямой, имела данную длину d.
Прислать комментарий     Решение


Задача 57200

Темы:   [ Метод ГМТ ]
[ Признаки и свойства параллелограмма ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 8,9

Дан четырёхугольник ABCD. Впишите в него параллелограмм с заданными направлениями сторон.

Прислать комментарий     Решение

Задача 54603

Темы:   [ Метод ГМТ ]
[ Пересекающиеся окружности ]
Сложность: 4+
Классы: 8,9

С помощью циркуля и линейки около данного треугольника опишите треугольник, равный другому данному треугольнику.

Прислать комментарий     Решение


Задача 54604

Темы:   [ Метод ГМТ ]
[ Пересекающиеся окружности ]
Сложность: 4+
Классы: 8,9

С помощью циркуля и линейки в данный треугольник впишите треугольник, равный другому данному треугольнику.

Прислать комментарий     Решение


Задача 78554

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Метод ГМТ ]
Сложность: 2+
Классы: 9,10

Внутри данного треугольника ABC найти такую точку O, чтобы площади треугольников AOB, BOC, COA относились как 1 : 2 : 3.
Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 93]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .