Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 107]
|
|
Сложность: 3+ Классы: 10,11
|
Тело в форме тетраэдра ABCD с одинаковыми рёбрами поставлено гранью
ABC на плоскость. Точка F – середина ребра CD,
точка S лежит на прямой AB, S ≠ A, AB = BS. В точку S сажают муравья. Как должен муравей ползти в точку F, чтобы пройденный им путь был минимальным?
|
|
Сложность: 4- Классы: 10,11
|
На каждой грани правильного тетраэдра с ребром 1 во внешнюю сторону построены правильные тетраэдры. Четыре их вершины, не принадлежащие исходному тетраэдру, образовали новый тетраэдр. Найдите его рёбра.
|
|
Сложность: 4- Классы: 10,11
|
Разрежьте правильный тетраэдр на равные многогранники с шестью гранями.
|
|
Сложность: 4- Классы: 10,11
|
Планета "Тетраинкогнито", покрытая "океаном", имеет форму правильного тетраэдра с ребром 900 км.
Какую площадь океана накроет "цунами" через 2 часа после тетратрясения с эпицентром в
а) центре грани,
б) середине ребра,
если скорость распространения цунами 300 км/час?
Точка
G — центр шара, вписанного в правильный тетраэдр
ABCD.
Прямая
OG, соединяющая
G с точкой
O, лежащей внутри тетраэдра, пересекает
плоскости граней в точках
A',
B',
C',
D'. Доказать, что
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 107]